Sharp operator mean inequalities of the numerical radii
نویسندگان
چکیده
We present several sharp upper bounds and some extension for product operators. Among other inequalities, it is shown that if , are non-negative continuous functions on such then all operator monotone decreasing function we obtain As an application of the above inequality, where, .
منابع مشابه
Some weighted operator geometric mean inequalities
In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...
متن کاملTwo sharp double inequalities for Seiffert mean
* Correspondence: [email protected] Department of Mathematics, Huzhou Teachers College, Huzhou 313000, People’s Republic of China Full list of author information is available at the end of the article Abstract In this paper, we establish two new inequalities between the root-square, arithmetic, and Seiffert means. The achieved results are inspired by the paper of Seiffert (Die Wurzel, ...
متن کاملFurther inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملSome Functional Inequalities for the Geometric Operator Mean
In this paper, we give some new inequalities of functional type for the power geometric operator mean involving several arguments.
متن کاملSome refinements of operator reverse AM-GM mean inequalities
In this paper, we prove the operator inequalities as follows: Let [Formula: see text] be positive operators on a Hilbert space with [Formula: see text] and [Formula: see text]. Then for every positive unital linear map Φ, [Formula: see text] and [Formula: see text] Moreover, we prove Lin's conjecture when [Formula: see text].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Operators and Matrices
سال: 2021
ISSN: ['1848-9974', '1846-3886']
DOI: https://doi.org/10.7153/oam-2021-15-29